

Comparative Study of Messaging Protocols
Used in Mobile Software Architecture

A State-of-the-art Literature Review

Lukas Gruber
Department of Media and Digital Technologies

University of Applied Sciences St.Pölten

3100 St.Pölten, Austria

it231519@fhstp.ac.at

Abstract — Messaging protocols are essential components of

modern software architectures, enabling efficient

communication between various software systems and devices.

This paper presents a comparative study of several prominent

messaging protocols, including HTTP, WebSockets,

WebTransport, WebRTC, MQTT, AMQP, CoAP, STOMP,

Matrix and XMPP. These protocols are evaluated and

compared based on key criteria such as performance, flexibility,

security, and suitability for different use cases. The results of

this study aim to guide software architects and developers in

selecting the most appropriate protocol for their specific needs.

Keywords — SOTA, Messaging Protocols, HTTP/3,

WebSockets, WebTransport, WebRTC, MQTT, AMQP, CoAP,

STOMP, Matrix, XMPP

I. INTRODUCTION / AREA OF RESEARCH

The IoT (Internet of Things) is growing both in terms of
the number of connected devices as well as in the variety of
use cases, e.g. smart phones, cars and automation systems [1].
None of these devices have an unlimited amount of battery life
or computing power nor can they guarantee permanent
network availability. In addition, safety concerns concerning
critical environments such as the medicine or industry sector
must be considered [2]. This is where protocols come into
play. Message protocols allow us to exchange data effectively
and reliably between software services respectively devices.

Since 1984, the ISO/OSI (Open Systems Interconnection
Model) has been the standard reference model for describing
communication across several technical system levels [3]. It
consists of seven successive layers. As the interfaces between
these layers are clearly defined, the protocol used within a
layer is interchangeable. For the web respectively the internet,
however, the TCP/IP reference model based on the OSI model
is more decisive [4]. It combines several OSI layers, as shown
in Fig. 1. The application layer represents the highest level of
abstraction and includes all protocols used for exchanging
application data such as HTTP or FTP.

Fig. 1 – Layers of OSI and TCP/IP [3], [4]

This paper focuses solely on protocols belonging to the
application layer. Though they depend on protocols that are
used on lower layers. Protocols were chosen depending on the
research taken for openly available protocols that can be used
for message exchange between software services/devices.

In general, the protocols examined can be divided into
different communication types. Some can be used for Peer-to-
Peer (P2P) communication. Others might be classified as
message-oriented middleware (MOM) [5]. MOM means that
there is no direct data transfer between two clients. Instead,
the communication between distributed systems is handled via
a message broker or likewise.

II. RELATED WORK

There are studies that specifically aim to compare IoT
protocols at the application layer. The most comprehensive
work found is “Investigating Messaging Protocols for the
Internet of Things (IoT)” [6]. This paper compares and
contrasts the HTTP, MQTT, CoAP, AMQP, XMPP and DDS
protocol. No papers were found that would provide a more
complete analysis featuring further protocols. Referenced
works such as “Choice of Effective Messaging Protocols for
IoT Systems: MQTT, CoAP, AMQP and HTTP” [7], take a
similar approach for the comparison. Both works collect the
protocol properties in a table containing for example the
release year, the application purpose and its architecture.
However, comparisons that do also include other web
protocols such as WebTransport are missing.

III. METHODOLOGY

Protocols of interest were determined through browsing

for related work starting with the term “messaging

protocols”. Sources for the research were IEEE, Google

Scholar and Google Search. After a protocol was identified

as significant for this paper the associated specification was

searched up. Additionally, at least two further trustworthy

sources from IEE or Google Scholar were determined per

protocol.

IV. COMPARISON ANALYSIS

This chapter serves to present the investigated protocols.

Mentioned RFC (Requests for Comments) refer to the

technical documentations published by the Internet

Engineering Task Force (IETF) [8]. The IETF is the premiere

standards development organization for the Internet. The

international organization for standardization (ISO) on the

other hand is a more formal and not internet specific

institution that has 169 national standardization bodies as

members [9].

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Internet

Network
Access

O
S

I

T
C

P
/I

P

mailto:it231519@fhstp.ac.at

A. HTTP/3 (RFC9114 [10])

Today, the Hypertext Transfer Protocol (HTTP) is the

basis for communication across the internet [11]. It is a

stateless protocol based on a request-response model. A client

sends a message, and a host/server generates a response

message. The first version of HTTP was standardized in

1997, followed by HTTP/2 in 2014. Finally, 2022 the

standard of HTTP/3 was introduced. Under the hood HTTP/3

uses QUIC and the UDP protocol on the transport layer and

therefore is able to solve line blocking problems that occurred

in previous HTTP versions that use TCP for multiplexing

[12].

QUIC (Quick UDP Internet Connections), standardized in

RFC 9000 [13], was initially developed by Google in 2012

and became a standard in 2021 [14]. While TCP allows

reliable ordered and error-checked delivery of data, UDP

sends datagrams without establishing a connection.

Therefore, it is more lightweight and faster than TCP but at

the same time cannot guarantee package delivery or order.

QUIC however builds up on top of UDP solving these issues

and trying to replace TCP in a faster, more secure and reliable

way.

Fig. 2 – HTTP Protocol Stack [11]

With HTTP there are several popular choices available for

building API’s (Application Programming Interfaces) [15].

These include SOAP, REST, gRPC and GraphQL. According

to the Postman state of the API 2023 survey report [16] REST

is the most used pattern with 86% of respondents using it.

B. WebSocket (RFC6455 [17]), WebTransport (RFC draft

[18]) & WebRTC (RFC8831 [19])

WebSockets can be used to establish bi-directional data

channels between clients and a server [20]. The WebSocket

standard was introduced in 2012. Like HTTP/2 it depends on

TCP. Messages are handled via a single ordered reliable

stream. This means that messages must be sent and received

in order. The consequence is that WebSocket’s are a bad

choice for latency-sensitive applications.

A kind of successor to WebSockets is the WebTransport

protocol [21]. Since 2021 the standard for WebTransport has

been under development. The big advantage over

WebSockets is the ability to create a bidirectional

multiplexed communication channel. Through datagrams

unreliable unordered data such as real-time audio or video

frames can be sent and received. Additionally, streams can be

used to send and receive reliable ordered data.

WebSocket and WebTransport can be used for real-time

client-to-server communication. However, in some cases it

might be necessary to create such a connection for p2p

(browser to browser) data transmission [22]. For this

scenario, WebRTC can be used. A possible use case is for

example a video call.

C. CoAP (RFC7252 [23])

The CoAP standard was published in 2014. It was
designed for the use within constrained (e.g., low-power,
lossy) networks and low performance devices [24]. Machine-
to-machine (M2M) applications like smart energy and
building automation are the preferred fields of application.
However, the protocol can easily interoperate with HTTP via
a proxy to provide a web interface. Therefore, the protocol
realizes a subset of the REST (Representational State
Transfer) architectural pattern and is based on a
request/response interaction model between a server and
clients. In addition, features like asynchronous message
delivery, device discovery or multicast support are
implemented. UDP is used as the default transportation
method but also TCP or SMS are possible options. Endpoints
are defined by an URI (e.g.,
coap://localhost:5683/device_name/parameter). Messages
can be secured with DTLS.

D. MQTT (ISO/IEC 20922:2016 [25])

After the protocols already presented, we now for the

first-time encounter with MQTT a MOM (Message Oriented

Middleware) based approach that can be used for many-to-

many communication [26]. The invention of MQTT dates to

1999. Nevertheless, it was not freely available until 2010.

2014 MQTT became an official OASIS standard.

Furthermore, MQTT v3.1.1 is an international standard

(ISO/IEC 20922:2016). In 2019 the MQTT v5 standard [27]

was ratified. MQTT is a platform-oriented, simple to

implement and lightweight protocol that can be used in many

different situations [28]. Because of its small footprint MQTT

is a perfect match for low-power and low-memory devices.

Use case examples are manufacturing systems, logistics,

enterprise chat applications and mobile apps. In earlier

versions MQTT referred to MQ Telemetry support, but

nowadays it is no longer considered an acronym. The

protocol is based on a publish/subscription model where

clients subscribe or publish to a specific topic. A Message

Broker is used to handle the incoming requests [29]. Also see

Fig. 3 – MQTT Publish/Subscribe Model [28]. A broker is

available from, for example, EMQX, HiveMQ, RabbitMQ or

Mosquito. As an underlying protocol there are several options

available. The default is TCP, WebSocket’s can be used for

connecting over a web browser and QUIC is the latest

available option [14].

Fig. 3 – MQTT Publish/Subscribe Model [28]

E. AMQP (ISO/IEC 19464:2014 [30])

OASIS introduced the first version of the Advanced

Message Queuing Protocol (AMQP) standard in 2012 [31].

Like for MQTT there exists an international standard

(ISO/IEC 19464:2014). It defines itself as an internet

protocol for business messaging and uses a MOM based

approach [32]. It was specifically designed for the finance

sector to address business processes, message transactions

and applications. For this a reliable protocol on the transport

layer such as TCP or QUIC is assumed. Similar to MQTT,

messages are exchanged via a broker [33]. The main

difference lies in the usage of message queues. In MQTT a

published message would be directly routed to subscribers. In

AMQP though published messages are first handled by an

exchange component. Depending on the configuration (like

routing keys and message type) messages are added to the

corresponding message queues [34]. There it will be stored

until a consumer consumes it. See Fig. 4 – AMQP core

concept [34]. Examples for AMQP message brokers are

RabbitMQ, SwiftMQ, Azure Service Bus and Apache

Artemis. Message queues are an essential concept to make

software scalable, resilient and working asynchronously.

Fig. 4 – AMQP core concept [34]

F. STOMP

STOMP (Simple Text Oriented Message Protocol) [35] is

designed to work with message-oriented middleware [36].

Whereas MQTT and AMQP are binary protocols, STOMP

is text-based. Due to the human-readable text-format STOMP

is simpler and therefore easier to implement than other

messaging protocols. Commonly it is used for real-time

messaging in distributed systems. Supported messaging

servers that support STOMP are for example RabbitMQ or

EMQX via a Gateway. The communication between a client

and the server is handled through a frame modelled on HTTP.

The first line of the frame contains the command, followed

by headers like username and password. The last line is the

message body. Destination addresses, transportation protocol

and security depend on the used server respectively message

broker.

G. XMPP (RFC6120 [37])

XMPP (eXtensible Messaging and Presence Protocol) or

formerly Jabber enables near-real-time exchange of data

[38]. Popular use cases are instant messaging, multi-party

chat, voice and video calls as seen in applications like

WhatsApp or Facebook. The protocol was mainly developed

in 1999 and was standardized the first time in 2004. In 2012

the latest revision RFC6120 was introduced. XMPP uses

XML (Extensible Markup Language) as the data-exchange

format and is based on a client/server architecture.

Furthermore, it uses TCP on the transportation layer. For the

XMPP Server there are many options available, e.g., Tigase

and ejabberd. Users on the network are addressed by email

like identifiers called JID’s. One of its strengths compared to

MQTT is the build in end-to-end encryption.

H. Matrix

An alternative to XMPP for instant messaging is Matrix

[39]. It was introduced in 2014 and is an open standard.

Compared to XMPP it is generally seen more usable for

group organization platforms like Slack [40]. Matrix supports

bridging to other messaging platforms such as XMPP servers,

Email and SMS enabling a unified way of communication.

Matrix is also considered to be more secure than, for example,

WhatsApp. The French government uses Matrix as base for

their own communication platform called Tchap that is used

for the communication of government officials and civil

servants. The world wide web currently lacks on scientific

papers observing this protocol.

V. CONCLUSION

In summary, all explored protocols have their unique
strengths and weaknesses. In practice, this is why multiple
protocols are used together to achieve the development goals
of a new application. With the rise of new technologies and
the gain in the number of internet devices more and more
protocols will emerge. Furthermore, the existing protocol
standards will evolve as well. QUIC is the best example for
this. It was standardized in 2021 and was then used as
transportation method of HTTP/3. Other technologies like
MQTT start profiting from the advantages of QUIC over TCP.
These developments leave room for future research in this
sector. In addition, detailed research of the protocol usage in
different programming environments can be conducted to
identify missing links and gain a deeper understanding of the
inner workings of web technologies and protocols in general.
To conclude Fig. 5 - Covered Protocols Summary contains the
summary of the protocols that were covered by this paper.

ACKNOWLEDGMENT

This paper was written as part of the master class Mobile
in the master program Interactive Technologies at the UAS
St.Pölten. It was revised based on the feedback from fellow
students.

REFERENCES

[1] J. Mesnil, Mobile and Web Messaging: Messaging Protocols for Web and

Mobile Devices. O’Reilly Media, Inc., 2014.

[2] J. C. Talwana and H. J. Hua, “Smart World of Internet of Things (IoT) and

Its Security Concerns,” in 2016 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), Dec. 2016, pp. 240–245. doi:

10.1109/iThings-GreenCom-CPSCom-SmartData.2016.64.

[3] Y. Li, D. Li, W. Cui, and R. Zhang, “Research based on OSI model,” in 2011

IEEE 3rd International Conference on Communication Software and

Networks, May 2011, pp. 554–557. doi: 10.1109/ICCSN.2011.6014631.

[4] F. Y. Aslan and B. Aslan, “Comparison of IoT Protocols with OSI and

TCP/IP Architecture,” Int. J. Eng. Res. Dev., vol. 15, no. 1, Art. no. 1, Jan.

2023.

[5] L. Qilin and Z. Mintian, “The State of the Art in Middleware,” in 2010

International Forum on Information Technology and Applications, Jul. 2010,

pp. 83–85. doi: 10.1109/IFITA.2010.118.

[6] E. Al-Masri et al., “Investigating Messaging Protocols for the Internet of

Things (IoT),” IEEE Access, vol. 8, pp. 94880–94911, 2020, doi:

10.1109/ACCESS.2020.2993363.

[7] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT,

CoAP, AMQP and HTTP,” in 2017 IEEE International Systems Engineering

Symposium (ISSE), Oct. 2017, pp. 1–7. doi: 10.1109/SysEng.2017.8088251.

Protocol Architecture/Pattern
Release date of latest
standard

Suitability Use Case Examples

HTTP/3 request/response 2022 (IETF) Default web data transfer
API’s (SOAP, REST,
GraphQL, gRPC, ...)

WebSocket
bi-directional (server-client)
channel

2011 (IETF)
Two-way single ordered reliable
server-client data transfer channel

Live Chat, Data
synchronization, …

WebTransport
bi-directional (server-client)
channel

Draft (IETF)
Two-way multiplexed un-/ordered /un-
/reliable server-client data transfer
channel

Everything from WebSocket’s
+ Games; Stream, …

WebRTC bi-directional (p2p) channel 2021 (IETF) p2p two-way data communication
Audio/Video Call, Screen
Sharing, …

CoAP request/response 2014 (IETF)
Same as HTTP but with smaller
package size, multicast support and
asynchrony

Constrained Networks (M2M,
IoT)

MQTT publish/subscribe (MOM)
2019 (OASIS) v5
2016 (ISO/IEC) v3

lightweight Many-to-Many
communication

Constrained Networks, Real-
time apps, Service Bus, …

AMQP publish/queue/consume 2014 (ISO/IEC)
Resilient, scalable and asynchronous
message transfer between software
services

Service Bus, Real-time apps,
Notifications, , …

STOMP client/server 2012 (STOMP) Simple text-based messaging
Simple interaction with
existing message
servers/brokers

XMPP client/server 2011 (IETF)
End-to-end encrypted many-to-many
messaging

Instant Messaging, Chat,
Video/Audio, …

Matrix client/server 2023 (Matrix)
End-to-end encrypted many-to-many
messaging

Same as XMPP but
specialized for security and
organized groups

Fig. 5 - Covered Protocols Summary

[8] “Introduction to the IETF,” IETF. Accessed: Nov. 12, 2023. [Online].

Available: https://www.ietf.org/about/introduction/
[9] “ISO - International Organization for Standardization,” ISO. Accessed: Nov.

15, 2023. [Online]. Available: https://www.iso.org/home.html

[10] M. Bishop, “HTTP/3,” Internet Engineering Task Force, Proposed Standard

RFC 9114, Jun. 2022. doi: 10.17487/RFC9114.

[11] M. Trevisan, D. Giordano, I. Drago, and A. S. Khatouni, “Measuring

HTTP/3: Adoption and Performance,” in 2021 19th Mediterranean

Communication and Computer Networking Conference (MedComNet), Jun.

2021, pp. 1–8. doi: 10.1109/MedComNet52149.2021.9501274.

[12] J. Koch and E. K. Gyamfi, “Securing HTTP/3 Web Architecture in the

Cloud,” in 2023 IEEE World AI IoT Congress (AIIoT), Jun. 2023, pp. 0158–

0166. doi: 10.1109/AIIoT58121.2023.10174337.

[13] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure

Transport,” Internet Engineering Task Force, Request for Comments RFC

9000, May 2021. doi: 10.17487/RFC9000.

[14] MQTT over QUIC: Revolutionizing IoV Messaging with the Next-Gen

Standard Protocol. EMQ. Accessed: Oct. 23, 2023. [Online]. Available:

https://www.emqx.com/en/resources/mqtt-over-quic-revolutionizing-iov-

messaging-with-the-next-gen-standard-protocol

[15] D. Gurus, “REST vs GraphQL vs gRPC,” Design Gurus: One-Stop Portal

For Tech Interviews. Accessed: Nov. 12, 2023. [Online]. Available:

https://www.designgurus.io/blog/REST-GraphQL-gRPC-system-design

[16] “2023 State of the API Report | API Technologies,” Postman API Platform.

Accessed: Nov. 12, 2023. [Online]. Available:

https://www.postman.com/state-of-api/api-technologies/

[17] A. Melnikov and I. Fette, “The WebSocket Protocol,” Internet Engineering

Task Force, Request for Comments RFC 6455, Dec. 2011. doi:

10.17487/RFC6455.

[18] V. Vasiliev, “The WebTransport Protocol Framework,” Internet Engineering

Task Force, Internet Draft draft-ietf-webtrans-overview-06, Sep. 2023.

Accessed: Nov. 12, 2023. [Online]. Available:

https://datatracker.ietf.org/doc/draft-ietf-webtrans-overview-06

[19] R. Jesup, S. Loreto, and M. Tüxen, “WebRTC Data Channels,” Internet

Engineering Task Force, Request for Comments RFC 8831, Jan. 2021. doi:

10.17487/RFC8831.

[20] S. Springer, Node.js - Das umfassende Handbuch, 4th ed. Bonn: Rheinwerk,

2022. [Online]. Available: https://www.rheinwerk-verlag.de/nodejs-das-

umfassende-handbuch/

[21] D. Williamson and R. O’Reilly, “WebTransport and WebSockets: An

Empirical Analysis of Connection Time, Message Response, and Payload

Efficiency,” in 2023 34th Irish Signals and Systems Conference (ISSC), Jun.

2023, pp. 1–6. doi: 10.1109/ISSC59246.2023.10162060.

[22] K. I. Zinnah Apu, N. Mahmud, F. Hasan, and S. H. Sagar, “P2P video

conferencing system based on WebRTC,” in 2017 International Conference

on Electrical, Computer and Communication Engineering (ECCE), Feb.

2017, pp. 557–561. doi: 10.1109/ECACE.2017.7912968.

[23] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application

Protocol (CoAP),” Internet Engineering Task Force, Request for Comments

RFC 7252, Jun. 2014. doi: 10.17487/RFC7252.

[24] S. Hamdani and H. Sbeyti, “A Comparative study of COAP and MQTT

communication protocols,” in 2019 7th International Symposium on Digital

Forensics and Security (ISDFS), Jun. 2019, pp. 1–5. doi:

10.1109/ISDFS.2019.8757486.

[25] “ISO/IEC 20922:2016(en), Information technology — Message Queuing

Telemetry Transport (MQTT) v3.1.1.” Accessed: Nov. 15, 2023. [Online].

Available: https://www.iso.org/obp/ui/en/#iso:std:69466:en

[26] C. B. Gemirter, Ç. Şenturca, and Ş. Baydere, “A Comparative Evaluation of

AMQP, MQTT and HTTP Protocols Using Real-Time Public Smart City

Data,” in 2021 6th International Conference on Computer Science and

Engineering (UBMK), Sep. 2021, pp. 542–547. doi:

10.1109/UBMK52708.2021.9559032.

[27] “MQTT Version 5.0.” Accessed: Nov. 12, 2023. [Online]. Available:

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[28] MQTT Essentials. HiveMQ. Accessed: Oct. 18, 2023. [Online]. Available:

https://www.hivemq.com/download-mqtt-ebook/

[29] A Practical Guide to MQTT Broker Selection. EMQ. Accessed: Oct. 23,

2023. [Online]. Available: https://www.emqx.com/en/resources/a-practical-

guide-to-mqtt-broker-selection

[30] “ISO/IEC 19464:2014(en), Information technology — Advanced Message

Queuing Protocol (AMQP) v1.0 specification.” Accessed: Nov. 15, 2023.

[Online]. Available: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:19464:ed-

1:v1:en

[31] “Advanced Message Queueing Protocol (AMQP) v1.0,” OASIS Open.

Accessed: Nov. 12, 2023. [Online]. Available: https://www.oasis-

open.org/standard/amqp/

[32] N. Basavaraju, N. Alexander, and J. Seitz, “Performance Evaluation of

Advanced Message Queuing Protocol (AMQP): An Empirical Analysis of

AMQP Online Message Brokers,” in 2021 International Symposium on

Networks, Computers and Communications (ISNCC), Oct. 2021, pp. 1–8.

doi: 10.1109/ISNCC52172.2021.9615705.

[33] N. Q. Uy and V. H. Nam, “A comparison of AMQP and MQTT protocols for

Internet of Things,” in 2019 6th NAFOSTED Conference on Information and

Computer Science (NICS), Dec. 2019, pp. 292–297. doi:

10.1109/NICS48868.2019.9023812.

[34] L. Johansson and D. Dossot, RabbitMQ Essentials - Second Edition. Packt,

2020. Accessed: Nov. 15, 2023. [Online]. Available:

https://www.packtpub.com/product/rabbitmq-essentials-second-

edition/9781789131666

[35] “STOMP Specification v1.2.” Accessed: Nov. 15, 2023. [Online]. Available:

https://stomp.github.io/stomp-specification-1.2.html

[36] “STOMP Protocol,” GeeksforGeeks. Accessed: Nov. 15, 2023. [Online].

Available: https://www.geeksforgeeks.org/stomp-protocol/

[37] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):

Core,” Internet Engineering Task Force, Request for Comments RFC 6120,

Mar. 2011. doi: 10.17487/RFC6120.

[38] S. Watkin and D. Koelle, Practical XMPP. Packt, 2016. Accessed: Nov. 15,

2023. [Online]. Available: https://www.packtpub.com/product/practical-

xmpp/9781785287985

[39] “Matrix Specification.” Accessed: Nov. 15, 2023. [Online]. Available:

https://spec.matrix.org/v1.8/

[40] “Matrix (protocol),” Wikipedia. Oct. 08, 2023. Accessed: Nov. 15, 2023.

[Online]. Available:

https://en.wikipedia.org/w/index.php?title=Matrix_(protocol)&oldid=117914

2671

